(z^3+2z^2-8z+2)(z^2+2z-8)=0

Simple and best practice solution for (z^3+2z^2-8z+2)(z^2+2z-8)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (z^3+2z^2-8z+2)(z^2+2z-8)=0 equation:


Simplifying
(z3 + 2z2 + -8z + 2)(z2 + 2z + -8) = 0

Reorder the terms:
(2 + -8z + 2z2 + z3)(z2 + 2z + -8) = 0

Reorder the terms:
(2 + -8z + 2z2 + z3)(-8 + 2z + z2) = 0

Multiply (2 + -8z + 2z2 + z3) * (-8 + 2z + z2)
(2(-8 + 2z + z2) + -8z * (-8 + 2z + z2) + 2z2 * (-8 + 2z + z2) + z3(-8 + 2z + z2)) = 0
((-8 * 2 + 2z * 2 + z2 * 2) + -8z * (-8 + 2z + z2) + 2z2 * (-8 + 2z + z2) + z3(-8 + 2z + z2)) = 0
((-16 + 4z + 2z2) + -8z * (-8 + 2z + z2) + 2z2 * (-8 + 2z + z2) + z3(-8 + 2z + z2)) = 0
(-16 + 4z + 2z2 + (-8 * -8z + 2z * -8z + z2 * -8z) + 2z2 * (-8 + 2z + z2) + z3(-8 + 2z + z2)) = 0
(-16 + 4z + 2z2 + (64z + -16z2 + -8z3) + 2z2 * (-8 + 2z + z2) + z3(-8 + 2z + z2)) = 0
(-16 + 4z + 2z2 + 64z + -16z2 + -8z3 + (-8 * 2z2 + 2z * 2z2 + z2 * 2z2) + z3(-8 + 2z + z2)) = 0
(-16 + 4z + 2z2 + 64z + -16z2 + -8z3 + (-16z2 + 4z3 + 2z4) + z3(-8 + 2z + z2)) = 0
(-16 + 4z + 2z2 + 64z + -16z2 + -8z3 + -16z2 + 4z3 + 2z4 + (-8 * z3 + 2z * z3 + z2 * z3)) = 0
(-16 + 4z + 2z2 + 64z + -16z2 + -8z3 + -16z2 + 4z3 + 2z4 + (-8z3 + 2z4 + z5)) = 0

Reorder the terms:
(-16 + 4z + 64z + 2z2 + -16z2 + -16z2 + -8z3 + 4z3 + -8z3 + 2z4 + 2z4 + z5) = 0

Combine like terms: 4z + 64z = 68z
(-16 + 68z + 2z2 + -16z2 + -16z2 + -8z3 + 4z3 + -8z3 + 2z4 + 2z4 + z5) = 0

Combine like terms: 2z2 + -16z2 = -14z2
(-16 + 68z + -14z2 + -16z2 + -8z3 + 4z3 + -8z3 + 2z4 + 2z4 + z5) = 0

Combine like terms: -14z2 + -16z2 = -30z2
(-16 + 68z + -30z2 + -8z3 + 4z3 + -8z3 + 2z4 + 2z4 + z5) = 0

Combine like terms: -8z3 + 4z3 = -4z3
(-16 + 68z + -30z2 + -4z3 + -8z3 + 2z4 + 2z4 + z5) = 0

Combine like terms: -4z3 + -8z3 = -12z3
(-16 + 68z + -30z2 + -12z3 + 2z4 + 2z4 + z5) = 0

Combine like terms: 2z4 + 2z4 = 4z4
(-16 + 68z + -30z2 + -12z3 + 4z4 + z5) = 0

Solving
-16 + 68z + -30z2 + -12z3 + 4z4 + z5 = 0

Solving for variable 'z'.

The solution to this equation could not be determined.

See similar equations:

| (5c-4)(6c-6)= | | 4(3x-1)-3(2x+1)=1-7x | | 80x^2+80x+11=0 | | 2a^2+12a=-32 | | 4x-2=3x-10 | | 3s^2+2s-21=0 | | y^2+2y=-10 | | -8y^2+2-y=0 | | y^2+2y+10=0 | | 3x+2x+1=5(x+2)+1 | | 3(x-2)+3x=1-(2x+5) | | 3c^2+23c+40=0 | | 3x+2=3(x+4)+1 | | 3y^3-10y^2+3y= | | 3(x-2)+3x=1-2x+5 | | -4(x+-4)=5x+3 | | -4(x-4)=5(x+3) | | 7y^3+36y^2+5y= | | c(x)=0.5x^2+0.4x+4.826 | | x(x-2)(x+3)=266 | | (x+4)+x+(2x-10)=46 | | 70b^2-3ab-a^2=0 | | x^3+x^2-6x-266=0 | | 3x^2-x-52=0 | | c^2-36c= | | 3x^2+8x=x^2-x-10 | | a^2-7a-8=0 | | 4x-y=z | | r^2-2r=3 | | 7y^3+13y^2-2y= | | 3x^2-2x-56=0 | | z^2+2iz=3i |

Equations solver categories